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1. INTRODUCTION. 

Aiming at understanding and cause the process of evolution and 
generalization of mathematical ideas, some of which can be 
registered through the perception of examples, one can observe 
this process and conduct discussion around the Padovan numbers. 
According to Padovan (2002) nature can be considered as 
something indescribable and unfathomable, and science and art are 
like a kind of abstraction where we try to understand them. 
The Sequence of Padovan, remembered by numbers 

(1,1,1,2,2,3,4,5,...), by recurrence: 2 3
P P P
n n n
 

   and 

by the characteristic equation 
3

1 0x x   . 
 
Also having historical origins in World War II, and being compared 
to another recurrent sequence known as Fibonacci sequence, but 
the latter is of 2nd order. 

2. DEFINITIONS AND HISTORICAL CONTEXT 

We will start the study of this sequence, defining its recurrence 
formula and, delaying the initial values of the Padovan sequence in 
this work. This delay is performed as a way to facilitate the 
calculations that will be performed during this paper.  
 
Definition 1. The sequence of Padovan or Cordonnier is obtained 
through the recurrence formula: 
 

0 1 2

2 3

0, 1;

, 3;n n n

P P P

P P P n 

  


  
 

 
Given the above recurrence, we can describe the solution 

(0,0,1,0,1,1,1,2,2,3,4,5, ...), as a sequence of 3rd order, and 

denoted as 
( )nP

, and being the set that compose it as the 
numbers of Padovan or Cordonnier. Some other initial values 
different than the definition of this sequence can be assigned. 
Hereafter, we will use the terminology Padovan or Cordonnier 

sequence and the notation
( )nP

representing the same sequence 
throughout the text. 

Thus the sequence of Padovan, which was given by the Italian 
architect Richard Padovan (1935 -?), Born in the city of Padua 
(Stewart, 1996), is a kind of relative of a better known one, such as 
Fibonacci sequence, arithmetic, and integers. Gérard Cordonnier 
(1907-1977), whose image is remembered in figure 1, has also 
developed some studies about these numbers, more specifically on 
the plastic number (radiant number), with that the sequence is also 
known as the Cordonnier sequence. 

Richard Padovan was born in 1935 studied architecture at the 
Architectural Association, London (1952-57). He believes, however, 
that his true architecture-oriented education began when he found 
the work and thought of the Dutch architect Hans van der Laan in 
1974. In 1999, he published Proportion: Science, Philosophy, 
Architecture. His latest book, Towards Universality: Le Corbusier, 
Mies and De Stijl in 2002, contrasts the grand philosophical ideals 
of European modernism. Gérard Cordonnier was born on 7 April 
1907 in Bailleul (North), and died suddenly in Lhez, in the High 
Pyrenees, by road accident, on July 12, 1977. 

One can highlight the Dutch Hans Van Der Laan (1904 - 1991) 
who conducted the architecture course at the Technische 
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Hogeschool in Delf. He used the primitive Christian basilica of the 
abbey as an example to train architects in the reconstruction of 
churches after World War II (VOET; SCHOONJANS, 2012). Laan 
and his brother sought patterns for architecture through 
experiments with stones and then with building materials, and 
eventually discovered a new pattern of measurements where the 
construction of this occurs through an irrational number, ideal for 
working on a geometric scale and space objects (rectangles, 
trapezoids, ellipses, etc.), this number is known as a plastic number 
or radiant number, and was first studied by Gérard Cordonnier. An 
analogy is made of the plastic number in relation to music: in music 
one can play chords, with the radiant number it is possible to 
compose walls, rooms and the like. 

 

 
Figure 1. Gerard Cordonnier 

Source : Google Imagens 

 

A 2D geometric representation of Padovan (see Figure 2) was 
developed in Geogebra software to explore the geometry of this 
sequence. This is composed by the juxtaposition of equilateral 
triangles respecting a characteristic construction rule. Consider the 
side 1 triangle highlighted in blue as the initial triangle. The 
formation of the spiral is given by the addition of a new equilateral 
triangle to the greater side of the formed polygon, initially the blue 
triangle. After the addition of the other triangles a new polygon is 
formed, known as plastic pentagon. The spiral presents itself by 
connecting two ends of the newly added triangle with an arc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Padovan's spiral 
Source : Prepared by the authors 

 

3. RELATIONSHIP WITH PLASTIC NUMBER 

As in the Fibonacci sequence, where it is related to the Golden 
number, a famous mathematical constant used in architecture due 
to its recurrent presence in symmetrical structures, the Padovan 

sequence is also related to a number, called a plastic number 
(BELINI , 2015). 

The characteristic equation of Padovan was obtained 
considering the relation of recurrence to the right side, obtaining 

3

2 2

1n n

n n

P P

P P



 

   soon 
1

22 2

3

1
. 1n n

nn n

n

P P

PP P

P



 



   . 

 Assuming that the limit exists, one has to: 

1

lim limn
n

n n
n

P

P
 

 


   for 1n  . Passing the boundary sign 

on equality: 

 
1

21 2

3

1
lim . lim1n n

n n
nn n

n

P P

PP P

P



 
 



   

soon 1

2

1
lim . lim1n n
n n

n

  



 



   .  

Thus, it can be determined that: 
2

1
. 1


   

determining the following polynomial equation of the Padovan 

sequence 
3 1 0    , that is, 

3 1 0x x    (Sahin, 

2017). 

The polynomial equation, 
3 1 0   

 being of third 
order, has two complex roots and one real root. This can also be 
verified by defining the locus of the function: 

3( ) 1f     
 (see Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Graph of the Characteristic Equation of Padovan 
Sequence 

Source: Prepared by the Authors 

 

Since this equation presented is not of the complete cubic form, one 
can use Cardano's formula to find its roots. Consider this equation 

of type 
³ 0p q   

 and its relation to the polynomial of 
Padovan sequence, we can define the root of a cubic polynomial 
not complete through the formula: 
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3 3
² ³ ² ³

2 4 27 2 4 27

q q p q q p


 
       

So for        you get: 

3 3
( 1) ( 1)² ( 1)³ ( 1) ( 1)² ( 1)³

2 4 27 2 4 27


       
       

 

3 3
1 1 1 1 1 1

1.324717957244746...
2 4 27 2 4 27

       

 

The ratio of convergence   is defined as   1l im 1.32n

n
n

P

P
 


 

and for Padovan sequence, considering its terms, we must have 

18

17

37
lim 1.32

28n

P

P



   , we can then notice the proximity 

between the convergence ratio ψ and the root of the Padovan 

polynomial. 

 

4. MATRIX APPROACH AND PROPERTIES 

A way to get any element of a linear and recursive sequence is 
through the generating matrix Q. This technique was applied to the 
Fibonacci sequence, and in this subsection the same idea will be 
applied to the Padovan numbers (Falcon; Plaza, 2007). 

The Padovan numbers have a Q matrix of order 3 x 3, which 
when raised to nth power, can get the nth term of this sequence 
without calculating the recursion. The matrix relationship can be 
represented by the matrix introduced by Sokhuma (2013) and 
Seenukul (2015). 

 

Theorem 1. For 1n   we have that the generating matrix Q of 

Padovan sequence having initial values 0 1 20, 1P P P    , is 

given by :  
 

0 1 0

0 0 1

1 1 0

Q

 
 


 
  

and 

1 1

2 1

1 3 2

n n n

n

n n n

n n n

P P P

Q P P P

P P P

 

 

  

 
 


 
  

 

 

so we have: 

0

1 0 0

0 1 0

0 0 1

Q

 
 


 
  

, 
1

0 1 0

0 0 1

1 1 0

Q

 
 


 
  

, 

2

0 0 1

1 1 0

0 1 1

Q

 
 


 
  

 

 

Proof. Using the principle of finite induction, we have that k = n + 1 

1 1.n nQ Q Q   

1 1

1

2 1

1 3 2

0 1 0

. 0 0 1

1 1 0

n n n

n

n n n

n n n

P P P

Q P P P

P P P

 



 

  

   
   


   
      

  

1 1 2 1

1

1 1 2 1 3 2

2 1 2 3 2 4 3

n n n n n n n

n

n n n n n n n

n n n n n n n

P P P P P P P

Q P P P P P P P

P P P P P P P

   



     

      

   
   

  
   
      

 

Another five Padovan generating matrices were found by Seenukul 
(2015), with the same initial values, permuting the rows and 
columns of this matrix represented in the above theorem, being 
obtained from the base matrix (Theorem 1) making permutations of 
the lines and columns, permutation of the latter following the 
principle used for the line. 

 

Theorem 2. For 1n   the generating matrix Q of Padovan 

sequence is given by:  

0 1 0

1 0 1

1 0 0

Q

 
 


 
  

 and  

2 1

3 2 1

1 1

n n n

n

n n n

n n n

P P P

Q P P P

P P P

 

  

 

 
 


 
  

 

so we have: 

0

1 0 0

0 1 0

0 0 1

Q

 
 


 
  

, 
1

0 1 0

1 0 1

1 0 0

Q

 
 


 
  

, 

2

1 0 1

1 1 0

0 1 0

Q

 
 


 
  

 

 

Proof. Using the principle of finite induction performed in Theorem 1, 

it is possible to demonstrate such a theorem, as well as the other.  

 

This matrix is obtained by performing a permutation as follows: 
the first line becomes the last line, the second line becomes the first 
line, and the third line becomes the second. In the same way, the 
permutation of the columns is performed where the first column 
becomes the last, the second column goes to the first column and 
the third goes to the second column, obtaining the matrix of 
Theorem 2. 

 

Theorem 3. For 1n   the generating matrix Q of Padovan 

sequence is given by:  

0 0 1

1 0 0

1 1 0

Q

 
 


 
  

 and  

2 1

1 1

3 1 2

n n n

n

n n n

n n n

P P P

Q P P P

P P P

 

 

  

 
 


 
  

 

 

so we have: 
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0

1 0 0

0 1 0

0 0 1

Q

 
 


 
  

, 
1

0 0 1

1 0 0

1 1 0

Q

 
 


 
  

, 

2

1 1 0

0 0 1

1 0 1

Q

 
 


 
  

 

In order to obtain this matrix, the base matrix (Theorem 1) was 

exchanged as follows: the first row was exchanged with the second, 

and the same columns were exchanged (first with the second 

column). 

 

Theorem 4. For 1n   the generating matrix Q of Padovan is given 

by:  

0 1 1

0 0 1

1 0 0

Q

 
 


 
  

 and  

2 1 3

1 1

1 2

n n n

n

n n n

n n n

P P P

Q P P P

P P P

  

 

 

 
 


 
  

 

so we have: 

0

1 0 0

0 1 0

0 0 1

Q

 
 


 
  

, 
1

0 1 1

0 0 1

1 0 0

Q

 
 


 
  

, 

2

1 0 1

1 0 0

0 1 1

Q

 
 


 
  

 

The matrix obtained from the base matrix of Theorem 1, performing: 

permutation of the first line becomes the second, permutation of the 

second line becoming th 

e last and, permutation of the last line becoming the first . The same 

row permutation procedure was performed for the columns of this 

matrix. 

 

Theorem 5. For 1n   the generating matrix Q of Padovan 

sequence is given by:  

0 0 1

1 0 1

0 1 0

Q

 
 


 
  

 and  

1 1

1 2 3

1 2

n n n

n

n n n

n n n

P P P

Q P P P

P P P

 

  

 

 
 


 
  

 

 

so we have: 

0

1 0 0

0 1 0

0 0 1

Q

 
 


 
  

, 
1

0 0 1

1 0 1

0 1 0

Q

 
 


 
  

, 

2

0 1 0

0 1 1

1 0 1

Q

 
 


 
  

 

This matrix was obtained by performing the permutation 
procedure of the second line with the third one, fixing the first line. 
The same process was performed for the permutation of the 
columns, obtaining the matrix of Theorem 5, from the matrix of 
Theorem 1. 
 
Theorem 6. For 1n   the generating matrix Q of Padovan 

sequence is given by:  

0 1 1

1 0 0

0 1 0

Q

 
 


 
  

 and  

2 3 1

1 2

1 1

n n n

n

n n n

n n n

P P P

Q P P P

P P P

  

 

 

 
 


 
  

 

so we have: 

0

1 0 0

0 1 0

0 0 1

Q

 
 


 
  

, 
1

0 1 1

1 0 0

0 1 0

Q

 
 


 
  

, 

2

1 1 0

0 1 1

1 0 0

Q

 
 


 
  

 

Finally, in order to obtain this last valid generating matrix of Padovan 

sequence, the first line was exchanged with the third one, fixing the 

second line, also performing the same procedure for the exchange of 

the columns, from the base matrix of the Theorem 1. 

 

Thereby, some properties related to the Padovan sequence, are 

shown below: 

 

Property 1.  For n , the following property is valid: 

1 1 2 2 1. ( )n m n m n m m n mP P P P P P P P           

 

Proof. A property that we can obtain is given through the generating 

matrix of Theorem 1, performing trivial operations of matrix arithmetic, 

we have: 

.n n n mQ Q Q    

1 2

1 2 2 3 3 4

1 2 3

n m n m n m

n m n m n m n m n m n m

n m n m n m

P P P

P P P P P P

P P P

    

           

     

 
 

   
 
  

1 2

1 2 2 3 3 4

1 2 3

.

n n n

n n n n n n

n n n

P P P

P P P P P P

P P P

 

     

  

 
 

   
 
  
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1 2

1 2 2 3 3 4

1 2 3

m m m

m m m m m m

m m m

P P P

P P P P P P

P P P

 

     

  

 
 

  
 
  

 

Providing immediately through the first element of the array, the 

property: 

1 1 2 2 1. ( )n m n m n m m n mP P P P P P P P           

Property 2.  For n , we have the property: 

1

( ) 1 ( 1) 1 ( 2) ( 1) 2( 1) . ( 1) .( . . )m m

n m n m n m n m m nP P P P P P P P P

            

Proof. Taking property 1, and replacing m mP P  , we get:

( ) ( ) 1 ( 1) ( 2) 2 ( 1). ( )n m n m n m m n mP P P P P P P P              

( ) ( ) 1 ( 1) ( 2) 2 ( 1). ( )n m n m n m m n mP P P P P P P P             

1

( ) 1 ( 1) ( 2) 2 ( 1)( 1) . ( 1) ( ) ( 1)m m m

n m n m n m m n mP P P P P P P P

            

1

( ) 1 ( 1) 1 ( 2) ( 1) 2( 1) . ( 1) .( . . )m m

n m n m n m n m m nP P P P P P P P P

            

 

5. THE BINET FORMULA 

Now we will explore the existence of an explicit formula for 

calculating the nth term of the sequence, without depending on the 

recurrence, through the Binet formula. In order to find such a formula, 

it is necessary to use the characteristic equation of this sequence. 

Theorem 7. For 0n   the Binet formula of the Padovan sequence 

is: 

1 2 3( ) . . .n n nP n A x B x C x    

where 1 2 3, ,x x x are the roots of the characteristic Padovan 

equation being one related to the plastic number and the other two 
complex and conjugated, and: 

3 2

1 3 1 3 2 3 3 2 1 2 2 1

1 3

1 3 1 3 2 3 3 2 1 2 2 1

2 1

1 3 1 3 2 3 3 2 1 2 2 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x x
A

x x x x x x x x x x x x

x x
B

x x x x x x x x x x x x

x x
C

x x x x x x x x x x x x




    




    




    

 

 

Proof. Using the initial values as 0 1 20, 1P P P   , we can 

substitute in the original Binet´s  formula, denoting the following 
system: 

1 2 3

2 2 2

1 2 3

0

. . . 0

. . . 1

A B C

A x B x C x

A x B x C x

   


  


  

 

By solving the linear system, it is possible to obtain: 

3 2

1 3 1 3 2 3 3 2 1 2 2 1

1 3

1 3 1 3 2 3 3 2 1 2 2 1

2 1

1 3 1 3 2 3 3 2 1 2 2 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x x
A

x x x x x x x x x x x x

x x
B

x x x x x x x x x x x x

x x
C

x x x x x x x x x x x x




    




    




    

 

 

as required.  
Yilmaz and Taskara (2013) also calculated the Binet formula from 
any initialization term.  

 

6. CONCLUSION 

This article describes the definition and properties of the Padovan 
like sequence, in addition to the historical context, its relation to the 
plastic number, Binet´s formula and its matrix representation. These 
new properties were discovered from properties already known from 
the Padovan sequence, using mathematical proofs to find the new 
results. It was also possible to obtain some properties, derived from 
the Padovan generating matrix, studied in this work. 
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