Mathematics communication as an alternative to overcome the obstacles of undergraduate students in mathematical proof

Dewi Risalah(1), H Hodiyanto(2Mail),
(1) Department of Mathematics Education, IKIP PGRI Pontianak, Pontianak, Indonesia
(2) Postgraduate, State University of Surabaya, Surabaya, Indonesia

Mail Corresponding Author

Abstract


Experiences at the educational personnel education institution, Department of Mathematics Education Institute of Teacher Training and Education Pontianak (IKIP) shows that students often had difficulty in proving propositions (theorems in mathe-matics). The alternative offered through this study was to develop students' abilities in proof through mathematical communication. The study method used in this study was qualitive research, case study. The subjects used in this study consisted of two un-dergraduate students who had been taught real analysis introductions and. The data collection tool used was tests and interview. Data analysis techniques used was de-scriptions: data reduction, data display and conclusion. Based on the results of re-search, study of theory and discussion, it could be concluded in this study that the student obstacles in answering mathematical proof questions are the students have difficulty in writing mathematical symbolic and inability in mathematical proof. But after being given didactic anticipation by mathematical communication, the ability of students to answer mathematical proof questions has increased. Thus, mathematical communication can be used as an alternative to overcome obstacles or difficulties for students in solving mathematical proof problems.


Keywords


Mathematics Communication; Mathematical Proof; Square and Triangle; Learning Media

   

Article DOI



DOI: https://doi.org/10.33122/ijtmer.v5i2.141
       

Article Metrics

 Abstract views : 69 
 PDF views : 19 


   

Article Pages


Pages: 125-132

   

Full Text:

PDF

References


Aguspinal. (2011). Peningkatan Kemampuan Berpikir Kreatif dan Komunikasi Matematis Siswa SMA Melalui Pendekatan Open-Ended dengan Strategi Group-To-Group. Tesis. Bandung: UPI. Tidak Diterbitkan.

Arifianto, S. (2016). Implementasi Metode Penelitian “Studi Kasus” dengan Pendekatan Kualitatif. Yogyakarta: Aswaja Pressindo.

Andri, S. (2013). Penerapan Model Pembelajaran Pace dalam Meningkatkan Kemampuan Membuktikan Matematis. In Prosiding Seminar Nasional Matematika dan Pendidikan Matematika. Jurusan Pendidikan Matematika FMIPA UNY.

Aqib, Z. (2014). Model-Model, Media, dan Strategi Pembelajaran Kontekstual (Inovatif). Bandung: Yrama Widya.

Arikunto, S. (2009). Dasar-Dasar Evaluasi Pendidikan. Jakarta: Bumi Aksara.

Creswell, J., W. (2012). Research design Pendekatan kualitatif, Kuantitatif dan Mixed; Cetakan ke-2. Yogyakarta: Pustaka Pelajar.

Evayanti, M. (2013). Desain Didaktis Konsep Luas Daerah Jajargenjang Pada Pembelajaran Matematika Sekolah Menengah Pertama (SMP) (Doctoral dissertation, Universitas Pendidikan Indonesia).

Hodiyanto, H. (2017). Analisis Kesalahan Mahasiswa Semester V dalam Mengerjakan Soal Pengantar Analisis Real. Edu Sains: Jurnal Pendidikan Sains & Matematika, 5(1), 33-44.

Güler, G. (2016). The Difficulties Experienced in Teaching Proof to Prospective Mathematics Teachers: Academician Views. Higher Education Studies, 6(1), 145.

Maya, R., & Sumarmo, U. (2014). Mathematical Understanding and Proving Abilities: Experiment With Undergraduate Student By Using Modified Moore Learning Approach. Journal on Mathematics Education, 2(2), 231-250.

National Council of Teachers of Mathematics (Ed.) (NCTM). (2000). Principles and standards for school mathematics (Vol. 1). National Council of Teachers of Mathematics.

Nawawi, H. (2012). Metode Penelitian Bidang Sosial. Yogjakarta : Gajah Mada University Press.

Ozdemir, E., & Ovez, F. T. D. (2012). A Research on proof perceptions and attitudes towards proof and proving: some implications for elementary mathematics prospective teachers. Procedia-Social and Behavioral Sciences, 46, 2121-2125.

Recio, A. M., & Godino, J. D. (2001). Institutional and personal meanings of mathematical proof. Educational Studies in Mathematics, 48(1), 83-99.

Riyanto, Y. (2009). Paradigma Baru Pembelajaran. Jakarta: Kencana Prenada Media Group.

Selden, A & Selden, T. (2003). Validations of Proofs Considered as Texts: Can Undergraduates Tell Whether an Argument Proves a Theorem? Journal for Research in Mathematics Education, Vol. 34, No. 1 4-36.

Suherman, E., Turmudzi., Suryadi., Herman, T., Suhendra., Prabawanto, S., Nurjanah, & Rohayati, A. (2001). Strategi Pembelajaran Matematika Kontemporer. Bandung: UPI Bandung.

Suryadi, D. (2013). Didactical design research (DDR) dalam pengembangan pembelajaran matematika. In Prosiding Seminar Nasional Matematika dan Pendidikan Matematika (pp. 3-12).

Soedjadi. (2000). Kiat Pendidikan Matematika di Indonesia. Jakarta: Direktorat Jenderal Pendidikan Tinggi Departemen Pendidikan Nasional.

Sugiyono. (2013). Metode Penelitian Kombinasi. Bandung: Alfabeta.

Trianto. (2011). Mendesain Model Pembelajaran Inovatif Progresif. Jakarta: Prenada Media Group.

Weber, K. (2003). A Procedural Route toward Understanding the Concept of Proof. International Group for the Psychology of Mathematics Education, 4, 395-401.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Dewi Risalah, Hodiyanto

International Journal of Trends in Mathematics Education Research (IJTMER)

E-ISSN 2621-8488

Published by the SAINTIS Publishing
Homepage: http://ijtmer.saintispub.com/index.php/ijtmer/index
Editor E-mail : ijtmer@saintispub.com; ijtmer@gmail.com

Creative Commons License  IJTMER is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.