Gold Open Access
Implementation of markov chain in predicting regeneration agricultural in Pasuruan district
(1) Program of Study Industrial Engineering, Universitas Yudharta Pasuruan, 67162, Indonesia
(2) Program of Study Industrial Engineering, Universitas Yudharta Pasuruan, 67162, Indonesia
(3) Program of Study Industrial Engineering, Universitas Yudharta Pasuruan, 67162, Indonesia
AbstractThe Industrial Era 5.0 has made many positive and negative changes in various sectors, one of the negative impacts is the agricultural sector related to the lower portion of young farmers so that it must be a serious concern for the government in future agricultural development programs, especially in agricultural base areas such as in Pasuruan Regency. This situation encourages the importance of finding solutions to realize the regeneration of farmers. This study aims to analyze the transformation between generations of agricultural workers in Pasuruan Regency through the Marcov Chain model approach. The final result of this study is the analysis of transformations between generations of agricultural workers in Pasuruan Regency so that it can be used as a basis for formulating future policies for better future generations of agriculture. KeywordsMarkov chain; Farmer Regeneration; Transformation
|
Article DOIDOI: https://doi.org/10.33122/ijtmer.v5i4.203 |
|
Article Metrics Abstract views : 421
PDF views : 237
|
Article PagesPages: 417-421 |
Full Text:PDF |
References
Adisel. (2015). Transformasi Masyarakat Petani Dari Tradisional ke Modern.
Anwarudin, O., Sumardjo, S., Satria, A., & Fatchiya, A. (2020). Process and Approach to Farmer Regeneration Through Multi-strategy in Indonesia. Jurnal Penelitian dan Pengembangan Pertanian, 39(2), 73. https://doi.org/10.21082/jp3.v39n2.2020.p73-85
Arvianti, E. Y., & et al. (2015). Minat Pemuda Tani Terhadap Transformasi Sektor Pertanian Di Kabupaten Ponorogo. Journal Buana Sains, 15(2), 181–188.
Fikriman. (2017). Transformasi Pertanian dan Pembangunan Pedesaan. urnal Agri Sains, 1(2), 1–12.
Holmes, B., McHale, I. G., & Żychaluk, K. (2022). A Markov chain model for forecasting results of mixed martial arts contests. International Journal of Forecasting, xxxx. https://doi.org/10.1016/j.ijforecast.2022.01.007
Jia, X., Wang, H., Xu, L., Wang, Q., Li, H., Hu, Z., Li, J., & Ouyang, M. (2021). Constructing representative driving cycle for heavy duty vehicle based on Markov chain method considering road slope. Energy and AI, 6, 100115. https://doi.org/10.1016/j.egyai.2021.100115
Khadijat, A., Anthony, T., Ganiyu, O., & Bolarinwa, S. (2021). Forest cover change in Onigambari reserve, Ibadan, Nigeria: Application of vegetation index and Markov chain techniques. Egyptian Journal of Remote Sensing and Space Science, 24(3), 983–990. https://doi.org/10.1016/j.ejrs.2021.08.004
Mas’ud, M. I. (2019). Riset Operasi 1. Yudharta Press.
Rens, M. T. H., Bea-Bragado, I., & Bea, J. A. (2022). Markov chain based non-linear fatigue damage accumulation model. Probabilistic Engineering Mechanics, 68(February), 103250. https://doi.org/10.1016/j.probengmech.2022.103250
Sánchez-Barroso, G., González-Domínguez, J., García-Sanz-Calcedo, J., & Sanz, J. G. (2021). Markov chains estimation of the optimal periodicity for cleaning photovoltaic panels installed in the dehesa. Renewable Energy, 179, 537–549. https://doi.org/10.1016/j.renene.2021.07.075
Susilowati, S. H. (2016). Fenomena Penuaan Petani dan Berkurangnya Tenaga Kerja Muda serta Implikasinya bagi Kebijakan Pembangunan Pertanian. Forum penelitian Agro Ekonomi, 34(1), 35. https://doi.org/10.21082/fae.v34n1.2016.35-55
Sylvester, J. (2022). The cover time of a (multiple) Markov chain with rational transition probabilities is rational. Statistics & Probability Letters, 187, 109534. https://doi.org/10.1016/j.spl.2022.109534
Vourdas, A. (2022). Markov chains with doubly stochastic transition matrices and application to a sequence of non-selective quantum measurements. Physica A: Statistical Mechanics and its Applications, 593, 126911. https://doi.org/10.1016/j.physa.2022.126911
Yakovyna, V., & Symets, I. (2021). Reliability assessment of CubeSat nanosatellites flight software by high-order Markov chains. Procedia Computer Science, 192, 447–456. https://doi.org/10.1016/j.procs.2021.08.046
Yodfiatfinda. (2018). Meningkatkan Minat Generasi Muda di Sektor Pertanian untuk Mewujudkan Ketahanan Pangan. Lembaga Ketahanan Nasional Republik Indonesia, 1–57. http://info.trilogi.ac.id/repository/assets/uploads/AGB/eeb6f-meningkatkan-minat-generasi-muda-di-sektor-pertanian-untuk-mewujudkan-ketahanan-pangan_b2.pdf
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Abdul Wahid, Ayik Pusakaningwati, M. Imron Masud



Abstract views : 421
